research

Differentiating Hydrothermal, Pedogenic, and Glacial Weathering in a Cold Volcanic Mars-Analog Environment

Abstract

Although the current cold, dry environment of Mars extends back through much of its history, its earliest periods experienced significant water- related surface activity. Both geomorphic features (e.g., paleolakes, deltas, and river valleys) and hydrous mineral detections (e.g., clays and salts) have historically been interpreted to imply a "warm and wet" early Mars climate. More recently, atmospheric modeling studies have struggled to produce early climate conditions with temperatures above 0degC, leading some studies to propose a "cold and icy" early Mars dominated by widespread glaciation with transient melting. However, the alteration mineralogy produced in subglacial environments is not well understood, so the extent to which cold climate glacial weathering can produce the diverse alteration mineralogy observed on Mars is unknown. This summer, we will be conducting a field campaign in a glacial weathering environment in the Cascade Range, OR in order to determine the types of minerals that these environments produce. However, we must first disentangle the effects of glacial weathering from other significant alteration processes. Here we attempt a first understanding of glacial weathering by differentiating rocks and sediments weathered by hydrothermal, pedogenic, and glacial weathering processes in the Cascades volcanic range

    Similar works