research

Characterization of Large Scale Functional Brain Networks During Ketamine-Medetomidine Anesthetic Induction

Abstract

Several experiments evidence that specialized brain regions functionally interact and reveal that the brain processes and integrates information in a specific and structured manner. Networks can be used to model brain functional activities constituting a way to characterize and quantify this structured form of organization. Reports state that different physiological states or even diseases that affect the central nervous system may be associated to alterations on those networks, that might reflect in graphs of different architectures. However, the relation of their structure to different states or conditions of the organism is not well comprehended. Thus, experiments that involve the estimation of functional neural networks of subjects exposed to different controlled conditions are of great relevance. Within this context, this research has sought to model large scale functional brain networks during an anesthetic induction process. The experiment was based on intra-cranial recordings of neural activities of an old world macaque of the species Macaca fuscata. Neural activity was recorded during a Ketamine-Medetomidine anesthetic induction process. Networks were serially estimated in time intervals of five seconds. Changes were observed in various networks properties within about one and a half minutes after the administration of the anesthetics. These changes reveal the occurrence of a transition on the networks architecture. During general anesthesia a reduction in the functional connectivity and network integration capabilities were verified in both local and global levels. It was also observed that the brain shifted to a highly specific and dynamic state. The results bring empirical evidence and report the relation of the induced state of anesthesia to properties of functional networks, thus, they contribute for the elucidation of some new aspects of neural correlates of consciousness.Comment: 28 pages , 9 figures, 7 tables; - English errors were corrected; Figures 1,3,4,5,6,8 and 9 were replaced by (exact the same)figures of higher resolution; Three(3) references were added on the introduction sectio

    Similar works

    Full text

    thumbnail-image

    Available Versions