The conducting gas that forms at the interface between LaAlO3 and
SrTiO3 has proven to be a fertile playground for a wide variety of physical
phenomena. The bulk of previous research has focused on the (001) and (110)
crystal orientations. Here we report detailed measurements of the
low-temperature electrical properties of (111) LAO/STO interface samples. We
find that the low-temperature electrical transport properties are highly
anisotropic, in that they differ significantly along two mutually orthogonal
crystal orientations at the interface. While anisotropy in the resistivity has
been reported in some (001) samples and in (110) samples, the anisotropy in the
(111) samples reported here is much stronger, and also manifests itself in the
Hall coefficient as well as the capacitance. In addition, the anisotropy is not
present at room temperature and at liquid nitrogen temperatures, but only at
liquid helium temperatures and below. The anisotropy is accentuated by exposure
to ultraviolet light, which disproportionately affects transport along one
surface crystal direction. Furthermore, analysis of the low-temperature Hall
coefficient and the capacitance as a function of back gate voltage indicates
that in addition to electrons, holes contribute to the electrical transport.Comment: 11 pages, 9 figure