research

Applications of lattice QCD techniques for condensed matter systems

Abstract

We review the application of lattice QCD techniques, most notably the Hybrid Monte-Carlo (HMC) simulations, to first-principle study of tight-binding models of crystalline solids with strong inter-electron interactions. After providing a basic introduction into the HMC algorithm as applied to condensed matter systems, we review HMC simulations of graphene, which in the recent years have helped to understand the semi-metal behavior of clean suspended graphene at the quantitative level. We also briefly summarize other novel physical results obtained in these simulations. Then we comment on the applicability of Hybrid Monte-Carlo to topological insulators and Dirac and Weyl semi-metals and highlight some of the relevant open physical problems. Finally, we also touch upon the lattice strong-coupling expansion technique as applied to condensed matter systems.Comment: 20 pages, 5 figures, Contribution to IJMPA special issue "Lattice gauge theory beyond QCD". List of references update

    Similar works