We study the problem of estimating the Schwarzschild radius of a massive body
using Gaussian quantum probe states. Previous calculations assumed that the
probe state remained pure after propagating a large distance. In a realistic
scenario, there would be inevitable losses. Here we introduce a practical
approach to calculate the Quantum Fisher Informations (QFIs) for a quantum
probe that has passed through a lossy channel. Whilst for many situations loss
means coherent states are optimal, we identify certain situations for which
squeezed states have an advantage. We also study the effect of the frequency
profile of the wavepacket propagating from Alice to Bob. There exists an
optimal operating point for a chosen mode profile. In particular, employing a
smooth rectangular frequency profile significantly improves the error bound on
the Schwarzschild radius compared to a Gaussian frequency profile.Comment: 14 pages, 18 figure