research

Cache-enabled Heterogeneous Cellular Networks: Comparison and Tradeoffs

Abstract

Caching popular contents at base stations (BSs) is a promising way to unleash the potential of cellular heterogeneous networks (HetNets), where backhaul has become a bottleneck. In this paper, we compare a cache-enabled HetNet where a tier of multi-antenna macro BSs is overlaid by a tier of helper nodes having caches but no backhaul with a conventional HetNet where the macro BSs tier is overlaid by a tier of pico BSs with limited-capacity backhaul. We resort stochastic geometry theory to derive the area spectral efficiencies (ASEs) of these two kinds of HetNets and obtain the closed-form expressions under a special case. We use numerical results to show that the helper density is only 1/4 of the pico BS density to achieve the same target ASE, and the helper density can be further reduced by increasing cache capacity. With given total cache capacity within an area, there exists an optimal helper node density that maximizes the ASE.Comment: Accepted by IEEE International Conference on Communications (ICC) 2016. This version includes detailed proofs of the proposition

    Similar works

    Full text

    thumbnail-image

    Available Versions