Under consideration is the damped semilinear wave equation utt+ut−Δu+u+f(u)=0 in a bounded domain Ω in R3
subject to an acoustic boundary condition with a singular perturbation, which
we term "massless acoustic perturbation," \ep\delta_{tt}+\delta_t+\delta =
-u_t\quad\text{for}\quad \ep\in[0,1]. By adapting earlier work by S.
Frigeri, we prove the existence of a family of global attractors for each
\ep\in[0,1]. We also establish the optimal regularity for the global
attractors, as well as the existence of an exponential attractor, for each
\ep\in[0,1]. The later result insures the global attractors possess finite
(fractal) dimension, however, we cannot yet guarantee that this dimension is
independent of the perturbation parameter \ep. The family of global
attractors are upper-semicontinuous with respect to the perturbation parameter
\ep, a result which follows by an application of a new abstract result also
contained in this article. Finally, we show that it is possible to obtain the
global attractors using weaker assumptions on the nonlinear term f, however,
in that case, the optimal regularity, the finite dimensionality, and the
upper-semicontinuity of the global attractors does not necessarily hold.Comment: To appear in EJDE. arXiv admin note: substantial text overlap with
arXiv:1503.01821 and text overlap with arXiv:1302.426