Recommender systems play a central role in providing individualized access to
information and services. This paper focuses on collaborative filtering, an
approach that exploits the shared structure among mind-liked users and similar
items. In particular, we focus on a formal probabilistic framework known as
Markov random fields (MRF). We address the open problem of structure learning
and introduce a sparsity-inducing algorithm to automatically estimate the
interaction structures between users and between items. Item-item and user-user
correlation networks are obtained as a by-product. Large-scale experiments on
movie recommendation and date matching datasets demonstrate the power of the
proposed method