This paper gives a review of the recent progress in the study of Fourier
bases and Fourier frames on self-affine measures. In particular, we emphasize
the new matrix analysis approach for checking the completeness of a mutually
orthogonal set. This method helps us settle down a long-standing conjecture
that Hadamard triples generates self-affine spectral measures. It also gives us
non-trivial examples of fractal measures with Fourier frames. Furthermore, a
new avenue is open to investigate whether the Middle Third Cantor measure
admits Fourier frames