research

Magnetism, superconductivity, and spontaneous orbital order in iron-based superconductors: who comes first and why?

Abstract

Magnetism and nematic order are the two non-superconducting orders observed in iron-based superconductors. To elucidate the interplay between them and ultimately unveil the pairing mechanism, several models have been investigated. In models with quenched orbital degrees of freedom, magnetic fluctuations promote stripe magnetism which induces orbital order. In models with quenched spin degrees of freedom, charge fluctuations promote spontaneous orbital order which induces stripe magnetism. Here we develop an unbiased approach, in which we treat magnetic and orbital fluctuations on equal footing. Key to our approach is the inclusion of the orbital character of the low-energy electronic states into renormalization group analysis. Our results show that in systems with large Fermi energies, such as BaFe2As2, LaFeAsO, and NaFeAs, orbital order is induced by stripe magnetism. However, in systems with small Fermi energies, such as FeSe, the system develops a spontaneous orbital order, while magnetic order does not develop. Our results provide a unifying description of different iron-based materials.Comment: 61 pages, 19 figure

    Similar works

    Full text

    thumbnail-image