Null space Newton algorithms are efficient in solving the nonlinear equations
arising in hydraulic analysis of water distribution networks. In this article,
we propose and evaluate an inexact Newton method that relies on partial updates
of the network pipes' frictional headloss computations to solve the linear
systems more efficiently and with numerical reliability. The update set
parameters are studied to propose appropriate values. Different null space
basis generation schemes are analysed to choose methods for sparse and
well-conditioned null space bases resulting in a smaller update set. The Newton
steps are computed in the null space by solving sparse, symmetric positive
definite systems with sparse Cholesky factorizations. By using the constant
structure of the null space system matrices, a single symbolic factorization in
the Cholesky decomposition is used multiple times, reducing the computational
cost of linear solves. The algorithms and analyses are validated using medium
to large-scale water network models.Comment: 15 pages, 9 figures, Preprint extension of Abraham and Stoianov, 2015
(https://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001089), September 2015.
Includes extended exposition, additional case studies and new simulations and
analysi