research

On Harmonic Analysis Operators in Laguerre-Dunkl and Laguerre-Symmetrized Settings

Abstract

We study several fundamental harmonic analysis operators in the multi-dimensional context of the Dunkl harmonic oscillator and the underlying group of reflections isomorphic to Z2d\mathbb{Z}_2^d. Noteworthy, we admit negative values of the multiplicity functions. Our investigations include maximal operators, gg-functions, Lusin area integrals, Riesz transforms and multipliers of Laplace and Laplace-Stieltjes type. By means of the general Calder\'on-Zygmund theory we prove that these operators are bounded on weighted LpL^p spaces, 1<p<1 < p < \infty, and from weighted L1L^1 to weighted weak L1L^1. We also obtain similar results for analogous set of operators in the closely related multi-dimensional Laguerre-symmetrized framework. The latter emerges from a symmetrization procedure proposed recently by the first two authors. As a by-product of the main developments we get some new results in the multi-dimensional Laguerre function setting of convolution type

    Similar works