research

A statistical test on the reliability of the non-coevality of stars in binary systems

Abstract

We develop a statistical test on the expected difference in age estimates of two coeval stars in detached double-lined eclipsing binary systems that are only caused by observational uncertainties. We focus on stars in the mass range [0.8; 1.6] Msun, and on stars in the main-sequence phase. The ages were obtained by means of the maximum-likelihood SCEPtER technique. The observational constraints used in the recovery procedure are stellar mass, radius, effective temperature, and metallicity [Fe/H]. We defined the statistic W computed as the ratio of the absolute difference of estimated ages for the two stars over the age of the older one. We determined the critical values of this statistics above which coevality can be rejected. The median expected difference in the reconstructed age between the coeval stars of a binary system -- caused alone by the observational uncertainties -- shows a strong dependence on the evolutionary stage. This ranges from about 20% for an evolved primary star to about 75% for a near ZAMS primary. The median difference also shows an increase with the mass of the primary star from 20% for 0.8 Msun stars to about 50% for 1.6 Msun stars. The reliability of these results was checked by repeating the process with a grid of stellar models computed by a different evolutionary code. We show that the W test is much more sensible to age differences in the binary system components than the alternative approach of comparing the confidence interval of the age of the two stars. We also found that the distribution of W is, for almost all the examined cases, well approximated by beta distributions. The proposed method improves upon the techniques that are commonly adopted for judging the coevality of an observed system. It also provides a result founded on reliable statistics that simultaneously accounts for all the observational uncertainties.Comment: Abstract shortened. Accepted for publication in A&A. One reference fixe

    Similar works