The use of anti-relaxation coatings in alkali vapor cells yields substantial
performance improvements by reducing the probability of spin relaxation in wall
collisions by several orders of magnitude. Some of the most effective
anti-relaxation coating materials are alpha-olefins, which (as in the case of
more traditional paraffin coatings) must undergo a curing period after cell
manufacturing in order to achieve the desired behavior. Until now, however, it
has been unclear what physicochemical processes occur during cell curing, and
how they may affect relevant cell properties. We present the results of
nondestructive Raman-spectroscopy and magnetic-resonance investigations of the
influence of alkali metal vapor (Cs or K) on an alpha-olefin, 1-nonadecene
coating the inner surface of a glass cell. It was found that during the curing
process, the alkali metal catalyzes migration of the carbon-carbon double bond,
yielding a mixture of cis- and trans-2-nonadecene.Comment: 5 pages, 6 figure