Active edge p-on-p silicon pixel detectors with thickness of 100 μm were
fabricated on 150 mm Float zone silicon wafers at VTT. By combining measured
results and TCAD simulations, a detailed study of electric field distributions
and charge collection performances as a function of applied voltage in a p-on-p
detector was carried out. A comparison with the results of a more conventional
active edge p-on-n pixel sensor is presented. The results from 3D spatial
mapping show that at pixel-to-edge distances less than 100 μm the sensitive
volume is extended to the physical edge of the detector when the applied
voltage is above full depletion. The results from a spectroscopic measurement
demonstrate a good functionality of the edge pixels. The interpixel isolation
above full depletion and the breakdown voltage were found to be equal to the
p-on-n sensor while lower charge collection was observed in the p-on-p pixel
sensor below 80 V. Simulations indicated this to be partly a result of a more
favourable weighting field in the p-on-n sensor and partly of lower hole
lifetimes in the p-bulk.Comment: 23 pages, 16 figures, 1 tabl