research

Acceptance dependence of fluctuation measures near the QCD critical point

Abstract

We argue that a crucial determinant of the acceptance dependence of fluctuation measures in heavy-ion collisions is the range of correlations in the momentum space, e.g., in rapidity, Δycorr\Delta y_{\rm corr}. The value of Δycorr1\Delta y_{\rm corr}\sim1 for critical thermal fluctuations is determined by the thermal rapidity spread of the particles at freezeout, and has little to do with position space correlations, even near the critical point where the spatial correlation length ξ\xi becomes as large as 232-3 fm (this is in contrast to the magnitudes of the cumulants, which are sensitive to ξ\xi). When the acceptance window is large, ΔyΔycorr\Delta y\gg\Delta y_{\rm corr}, the cumulants of a given particle multiplicity, κk\kappa_k, scale linearly with Δy\Delta y, or mean multiplicity in acceptance, N\langle N\rangle, and cumulant ratios are acceptance independent. While in the opposite regime, ΔyΔycorr\Delta y\ll\Delta y_{\rm corr}, the factorial cumulants, κ^k\hat\kappa_k, scale as (Δy)k(\Delta y)^k, or Nk\langle N\rangle^k. We demonstrate this general behavior quantitatively in a model for critical point fluctuations, which also shows that the dependence on transverse momentum acceptance is very significant. We conclude that extension of rapidity coverage proposed by STAR should significantly increase the magnitude of the critical point fluctuation signatures.Comment: 9 pages, 4 figures, references adde

    Similar works