research

Fundamental Bounds and Approaches to Sequence Reconstruction from Nanopore Sequencers

Abstract

Nanopore sequencers are emerging as promising new platforms for high-throughput sequencing. As with other technologies, sequencer errors pose a major challenge for their effective use. In this paper, we present a novel information theoretic analysis of the impact of insertion-deletion (indel) errors in nanopore sequencers. In particular, we consider the following problems: (i) for given indel error characteristics and rate, what is the probability of accurate reconstruction as a function of sequence length; (ii) what is the number of `typical' sequences within the distortion bound induced by indel errors; (iii) using replicated extrusion (the process of passing a DNA strand through the nanopore), what is the number of replicas needed to reduce the distortion bound so that only one typical sequence exists within the distortion bound. Our results provide a number of important insights: (i) the maximum length of a sequence that can be accurately reconstructed in the presence of indel and substitution errors is relatively small; (ii) the number of typical sequences within the distortion bound is large; and (iii) replicated extrusion is an effective technique for unique reconstruction. In particular, we show that the number of replicas is a slow function (logarithmic) of sequence length -- implying that through replicated extrusion, we can sequence large reads using nanopore sequencers. Our model considers indel and substitution errors separately. In this sense, it can be viewed as providing (tight) bounds on reconstruction lengths and repetitions for accurate reconstruction when the two error modes are considered in a single model.Comment: 12 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions