research

Radial Bargmann representation for the Fock space of type B

Abstract

Let να,q\nu_{\alpha,q} be the probability and orthogonality measure for the qq-Meixner-Pollaczek orthogonal polynomials, which has appeared in \cite{BEH15} as the distribution of the (α,q)(\alpha,q)-Gaussian process (the Gaussian process of type B) over the (α,q)(\alpha,q)-Fock space (the Fock space of type B). The main purpose of this paper is to find the radial Bargmann representation of να,q\nu_{\alpha,q}. Our main results cover not only the representation of qq-Gaussian distribution by \cite{LM95}, but also of q2q^2-Gaussian and symmetric free Meixner distributions on R\mathbb R. In addition, non-trivial commutation relations satisfied by (α,q)(\alpha,q)-operators are presented.Comment: 13 pages, minor changes have been mad

    Similar works