research

The block-ZXZ synthesis of an arbitrary quantum circuit

Abstract

Given an arbitrary 2w×2w2^w \times 2^w unitary matrix UU, a powerful matrix decomposition can be applied, leading to four different syntheses of a ww-qubit quantum circuit performing the unitary transformation. The demonstration is based on a recent theorem by F\"uhr and Rzeszotnik, generalizing the scaling of single-bit unitary gates (w=1w=1) to gates with arbitrary value of~ww. The synthesized circuit consists of controlled 1-qubit gates, such as NEGATOR gates and PHASOR gates. Interestingly, the approach reduces to a known synthesis method for classical logic circuits consisting of controlled NOT gates, in the case that UU is a permutation matrix.Comment: Improved (non-sinkhorn) algorithm to obtain the proposed circui

    Similar works