A global vector field v on a "spacetime" differentiable manifold
V, of dimension N+1, defines a congruence of world lines: the
maximal integral curves of v, or orbits. The associated global space
N_v is the set of these orbits. A "v-adapted" chart on
V is one for which the RN vector ${\bf x}\equiv (x^j)\
(j=1,...,N)ofthe"spatial"coordinatesremainsconstantonanyorbitl.Weconsidernon−vanishingvectorfieldsvthathavenon−periodicorbits,eachofwhichisaclosedset.Weprovetransversalitytheoremsrelevanttosuchvectorfields.Duetotheseresults,itcanbeconsideredplausiblethat,forsuchavectorfield,thereexistsintheneighborhoodofanypointX\in \mathrm{V}achart\chi thatisv−adaptedand"nice",i.e.,suchthatthemapping\bar{\chi }: l\mapsto {\bf x}isinjective−−−unlessvhassome"pathological"character.Thisleadsustodefineanotionof"normal"vectorfield.Foranysuchvectorfield,themappings\bar{\chi }buildanatlasofcharts,thusproviding\mathrm{N}\_vwithacanonicalstructureofdifferentiablemanifold(whenthetopologydefinedon\mathrm{N}\_visHausdorff,forwhichwegiveasufficientconditionmetinimportantphysicalsituations).Previously,alocalspacemanifold\mathrm{M}\_\mathrm{F}hadbeenassociatedwithany"referenceframe"\mathrm{F},definedasanequivalenceclassofcharts.Weshowthat,if\mathrm{F}ismadeofnicev−adaptedcharts,\mathrm{M}\_\mathrm{F}isnaturallyidentifiedwithanopensubsetoftheglobalspacemanifold\mathrm{N}\_v$.Comment: 38 pages. v3: version accepted for publication in Int. J. Geom. Meth.
Mod. Phys.: stronger statements in Prop. 0 and Prop. 8, and precisions in the
abstract, following from referee's suggestions; stronger form of Theorem 5;
new example