Recurrent neural networks have shown excellent performance in many
applications, however they require increased complexity in hardware or software
based implementations. The hardware complexity can be much lowered by
minimizing the word-length of weights and signals. This work analyzes the
fixed-point performance of recurrent neural networks using a retrain based
quantization method. The quantization sensitivity of each layer in RNNs is
studied, and the overall fixed-point optimization results minimizing the
capacity of weights while not sacrificing the performance are presented. A
language model and a phoneme recognition examples are used