Electronic devices composed of single molecules constitute the ultimate limit
in the continued downscaling of electronic components. A key challenge for
single-molecule electronics is to control the temperature of these junctions.
Controlling heating and cooling effects in individual vibrational modes, can in
principle, be utilized to increase stability of single-molecule junctions under
bias, to pump energy into particular vibrational modes to perform
current-induced reactions or to increase the resolution in inelastic electron
tunneling spectroscopy by controlling the life-times of phonons in a molecule
by suppressing absorption and external dissipation processes. Under bias the
current and the molecule exchange energy, which typically results in heating of
the molecule. However, the opposite process is also possible, where energy is
extracted from the molecule by the tunneling current. Designing a molecular
'heat sink' where a particular vibrational mode funnels heat out of the
molecule and into the leads would be very desirable. It is even possible to
imagine how the vibrational energy of the other vibrational modes could be
funneled into the 'cooling mode', given the right molecular design. Previous
efforts to understand heating and cooling mechanisms in single molecule
junctions, have primarily been concerned with small models, where it is unclear
which molecular systems they correspond to. In this paper, our focus is on
suppressing heating and obtaining current-induced cooling in certain
vibrational modes. Strategies for cooling vibrational modes in single-molecule
junctions are presented, together with atomistic calculations based on those
strategies. Cooling and reduced heating are observed for two different cooling
schemes in calculations of atomistic single-molecule junctions.Comment: 18 pages, 6 figure