Given a problem which is intractable for both quantum and classical
algorithms, can we find a sub-problem for which quantum algorithms provide an
exponential advantage? We refer to this problem as the "sculpting problem." In
this work, we give a full characterization of sculptable functions in the query
complexity setting. We show that a total function f can be restricted to a
promise P such that Q(f|_P)=O(polylog(N)) and R(f|_P)=N^{Omega(1)}, if and only
if f has a large number of inputs with large certificate complexity. The proof
uses some interesting techniques: for one direction, we introduce new
relationships between randomized and quantum query complexity in various
settings, and for the other direction, we use a recent result from
communication complexity due to Klartag and Regev. We also characterize
sculpting for other query complexity measures, such as R(f) vs. R_0(f) and
R_0(f) vs. D(f).
Along the way, we prove some new relationships for quantum query complexity:
for example, a nearly quadratic relationship between Q(f) and D(f) whenever the
promise of f is small. This contrasts with the recent super-quadratic query
complexity separations, showing that the maximum gap between classical and
quantum query complexities is indeed quadratic in various settings - just not
for total functions!
Lastly, we investigate sculpting in the Turing machine model. We show that if
there is any BPP-bi-immune language in BQP, then every language outside BPP can
be restricted to a promise which places it in PromiseBQP but not in PromiseBPP.
Under a weaker assumption, that some problem in BQP is hard on average for
P/poly, we show that every paddable language outside BPP is sculptable in this
way.Comment: 30 page