ABC algorithms are notoriously expensive in computing time, as they require
simulating many complete artificial datasets from the model. We advocate in
this paper a "divide and conquer" approach to ABC, where we split the
likelihood into n factors, and combine in some way n "local" ABC approximations
of each factor. This has two advantages: (a) such an approach is typically much
faster than standard ABC and (b) it makes it possible to use local summary
statistics (i.e. summary statistics that depend only on the data-points that
correspond to a single factor), rather than global summary statistics (that
depend on the complete dataset). This greatly alleviates the bias introduced by
summary statistics, and even removes it entirely in situations where local
summary statistics are simply the identity function.
We focus on EP (Expectation-Propagation), a convenient and powerful way to
combine n local approximations into a global approximation. Compared to the EP-
ABC approach of Barthelm\'e and Chopin (2014), we present two variations, one
based on the parallel EP algorithm of Cseke and Heskes (2011), which has the
advantage of being implementable on a parallel architecture, and one version
which bridges the gap between standard EP and parallel EP. We illustrate our
approach with an expensive application of ABC, namely inference on spatial
extremes.Comment: To appear in the forthcoming Handbook of Approximate Bayesian
Computation (ABC), edited by S. Sisson, L. Fan, and M. Beaumon