research

Amplification of the quantum superposition macroscopicity of a flux qubit by a magnetized Bose gas

Abstract

We calculate a measure of superposition macroscopicity M\mathcal{M} for a superposition of screening current states in a superconducting flux qubit (SFQ), by relating M\mathcal{M} to the action of an instanton trajectory connecting the potential wells of the flux qubit. When a magnetized Bose-Einstein condensed (BEC) gas containing NBO(106)N_{B}\sim \mathcal{O}(10^6) atoms is brought into a O(1)\mathcal{O}(1) μm\mu\text{m} proximity of the flux qubit in an experimentally realistic geometry, we demonstrate the appearance of a two- to five-fold amplification of M\mathcal{M} over the bare value without the BEC, by calculating the instantion trajectory action from the microscopically derived effective flux Lagrangian of a hybrid quantum system composed of the flux qubit and a spin-FF atomic Bose gas. Exploiting the connection between M\mathcal M and the maximal metrological usefulness of a multimode superposition state, we show that amplification of M\mathcal{M} in the ground state of the hybrid system is equivalent to a decrease in the quantum Cram\'{e}r-Rao bound for estimation of an externally applied flux. Our result therefore demonstrates the increased usefulness of the BEC--SFQ hybrid system as a sensor of ultraweak magnetic fields below the standard quantum limit.Comment: 10 pages, 2 figure

    Similar works