research

Magnetic fields in primordial accretion disks

Abstract

Magnetic fields are considered as a vital ingredient of contemporary star formation, and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations, and are subsequently amplified by the small-scale dynamo, leading to a strong tangled magnetic field. Here we explore how the magnetic field provided by the small-scale dynamo is further amplified via the α−Ω\alpha-\Omega dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop.~III star with 1010~M⊙_\odot and an accretion rate of 10−310^{-3}~M⊙_\odot~yr−1^{-1}, and a supermassive star with 10510^5~M⊙_\odot and an accretion rate of 10−110^{-1}~M⊙_\odot~yr−1^{-1}. For the 1010~M⊙_\odot Pop.~III star, we find that coherent magnetic fields can be produced on scales of at least 100100~AU, which are sufficient to drive a jet with a luminosity of 100100~L⊙_\odot and a mass outflow rate of 10−3.710^{-3.7}~M⊙_\odot~yr−1^{-1}. For the supermassive star, the dynamical timescales in its environment are even shorter, implying smaller orbital timescales and an efficient magnetization out to at least 10001000~AU. The jet luminosity corresponds to ∼106.0\sim10^{6.0}~L⊙_\odot, and a mass outflow rate of 10−2.110^{-2.1}~M⊙_\odot~yr−1^{-1}. We expect that the feedback from the supermassive star can have a relevant impact on its host galaxy.Comment: Accepted for publication in Astronomy & Astrophysics, comments are still welcom

    Similar works