research

Nonlinear stratospheric variability: multifractal detrended fluctuation analysis and singularity spectra

Abstract

Characterising the stratosphere as a turbulent system, temporal fluctuations often show different correlations for different time scales as well as intermittent behaviour that cannot be captured by a single scaling exponent. In this study, the different scaling laws in the long term stratospheric variability are studied using Multifractal de-trended Fluctuation Analysis. The analysis is performed comparing four re-analysis products and different realisations of an idealised numerical model, isolating the role of topographic forcing and seasonal variability, as well as the absence of climate teleconnections and small-scale forcing. The Northern Hemisphere (NH) shows a transition of scaling exponents for time scales shorter than about one year, for which the variability is multifractal and scales in time with a power law corresponding to a red spectrum, to longer time scales, for which the variability is monofractal and scales in time with a power law corresponding to white noise. Southern Hemisphere (SH) variability also shows a transition at annual scales. The SH also shows a narrower dynamical range in multifractality than the NH, as seen in the generalised Hurst exponent and in the singularity spectra. The numerical integrations show that the models are able to reproduce the low-frequency variability but are not able to fully capture the shorter term variability of the stratosphere

    Similar works

    Full text

    thumbnail-image

    Available Versions