research

Properties of (Ga1−x_{1-x}Inx_x)2_2O3_3 over the whole xx range

Abstract

Using density-functional ab initio theoretical techniques, we study (Ga1−x_{1-x}Inx_x)2_2O3_3 in both its equilibrium structures (monoclinic β\beta and bixbyite) and over the whole range of composition. We establish that the alloy exhibits a large and temperature-independent miscibility gap. On the low-xx side, the favored phase is isostructural with β\beta-Ga2_2O3_3; on the high-xx side, it is isostructural with bixbyite In2_2O3_3. The miscibility gap opens between approximately 15\% and 55\% In content for the bixbyite alloy grown epitaxially on In2_2O3_3, and 15\% and 85\% In content for the free-standing bixbyite alloy. The gap, volume and band offsets to the parent compound also exhibit anomalies as function of xx. Specifically, the offsets in epitaxial conditions are predominantly type-B staggered, but have opposite signs in the two end-of-range phases.Comment: 7 pages, 4 figure

    Similar works