research

Convergence Rate of Nonlinear Switched Systems

Abstract

This paper is concerned with the convergence rate of the solutions of nonlinear switched systems. We first consider a switched system which is asymptotically stable for a class of inputs but not for all inputs. We show that solutions corresponding to that class of inputs converge arbitrarily slowly to the origin. Then we consider analytic switched systems for which a common weak quadratic Lyapunov function exists. Under two different sets of assumptions we provide explicit exponential convergence rates for inputs with a fixed dwell-time

    Similar works

    Full text

    thumbnail-image

    Available Versions