In this work we present CO(1-0) and CO(2-1) observations of a pilot sample of
15 early-type galaxies (ETGs) drawn from the MASSIVE galaxy survey, a
volume-limited integral-field spectroscopic study of the most massive ETGs
(M∗>1011.5M⊙) within 108 Mpc. These objects were selected because
they showed signs of an interstellar medium and/or star formation. A large
amount of gas (>2×108 M⊙) is present in 10 out of 15
objects, and these galaxies have gas fractions higher than expected based on
extrapolation from lower mass samples. We tentatively interpret this as
evidence that stellar mass loss and hot halo cooling may be starting to play a
role in fuelling the most massive galaxies. These MASSIVE ETGs seem to have
lower star-formation efficiencies (SFE=SFR/MH2) than spiral galaxies,
but the SFEs derived are consistent with being drawn from the same distribution
found in other lower mass ETG samples. This suggests that the SFE is not simply
a function of stellar mass, but that local, internal processes are more
important for regulating star formation. Finally we used the CO line profiles
to investigate the high-mass end of the Tully-Fisher relation (TFR). We find
that there is a break in the slope of the TFR for ETGs at high masses
(consistent with previous studies). The strength of this break correlates with
the stellar velocity dispersion of the host galaxies, suggesting it is caused
by additional baryonic mass being present in the centre of massive ETGs. We
speculate on the root cause of this change and its implications for galaxy
formation theories.Comment: 13 pages, 7 figures, accepted by MNRA