Data for Octanuclear heterobimetallic {Ni4Ln4} assemblies possessing Ln4 square grid [2×2] motifs: synthesis, structure and magnetism

Abstract

Octanuclear heterobimetallic complexes, [Ln4Ni4(H3L)4(µ3-OH)4(µ2-OH)4]4Cl·xH2O·yCHCl3 (Dy3+ , x = 30.6, y = 2 (1); Tb3+ , x = 28, y = 0 (2) ; Gd3+ , x = 25.3, y = 0 (3); Ho3+ , x = 30.6, y = 3 (4)) (H5L = N1, N3-bis(6-formyl-2-(hydroxymethyl) -4-methylphenol) diethylenetriamine) are reported. These are assembled by the cumulative coordination action of four doubly deprotonated compartmental ligands, [H3L] 2- , along with eight exogenous –OH ligands. Within the core of these complexes, four Ln3+ are distributed to the four corners of a perfect square grid while four Ni2+ are projected away from the plane of the Ln4 unit. Each of the four Ni2+ possesses distorted octahedral geometry while all the Ln3+ are crystallographically equivalent and are present in an elongated square antiprism geometry. The magnetic properties of compound 3 are dominated by an easy-plane single-ion anisotropy of the Ni2+ ions [DNi = 6.7(7) K] and dipolar interactions between Gd3+ centers. Detailed ac magnetometry reveals the presence of distinct temperature-dependent out-of-phase signals for compounds 1 and 2, indicative of slow magnetic relaxation. Magnetochemical analysis of complex 1 implies the 3d and the 4f metal ions are engaged in ferromagnetic interactions with SMM behavior, while dc magnetometry of compound 2 is suggestive of an antiferromagnetic Ni-Tb spin-exchange with slow magnetic relaxation due to a field-induced level crossing. Compound 4 exhibits an easy-plane single-ion anisotropy for the Ho3+ ions and weak interactions between spin centers

    Similar works

    Full text

    thumbnail-image