research

Faster deterministic communication in radio networks

Abstract

In this paper we improve the deterministic complexity of two fundamental communication primitives in the classical model of ad-hoc radio networks with unknown topology: broadcasting and wake-up. We consider an unknown radio network, in which all nodes have no prior knowledge about network topology, and know only the size of the network n, the maximum in-degree of any node Δ, and the eccentricity of the network D. For such networks, we first give an algorithm for wake-up, in both directed and undirected networks, based on the existence of small universal synchronizers. This algorithm runs in O(min{n,DΔ}lognlogΔloglogΔ) time, improving over the previous best O(nlog2n)-time result across all ranges of parameters, but particularly when maximum in-degree is small. Next, we introduce a new combinatorial framework of block synchronizers and prove the existence of such objects of low size. Using this framework, we design a new deterministic algorithm for the fundamental problem of broadcasting, running in O(nlogDloglogDΔn) time. This is the fastest known algorithm for this problems, improving upon the O(nlognloglogn)-time algorithm of De Marco (2010) and the O(nlog2D)-time algorithm due to Czumaj and Rytter (2003), the previous fastest results for directed networks, and is the first to come within a log-logarithmic factor of the Ω(nlogD) lower bound due to Clementi et al. (2003). Our results have also direct implications on the fastest deterministic leader election and clock synchronization algorithms in both directed and undirected radio networks, tasks which are commonly used as building blocks for more complex procedures

    Similar works