thesis

Modelling, real-time simulation and control of automotive windscreen wiper systems for electronic control unit development

Abstract

In recent years there has been a growth in the automotive industry, coupled with a growth in the amount of electronic components and systems in a modern vehicle. The higher amount of electronics has led to an increased amount of Electronic Control Units (ECU) in a vehicle which require advanced simulation based testing procedures throughout their development process. One such method is Hardware in the Loop (HIL) simulation in which a real ECU is connected to simulation models of its environment via a real-time simulator. This project is concerned with developing a plant model of a windscreen wiper system for use in the development of Jaguar Land Rover’s (JLR) body electronics ECU. The system is divided into four parts which are modelled separately: Wiper motor, linkages, arm and blades, and the windscreen environment. The wiper motor and mechanical elements models are derived and implemented using the physical modelling tools SimScape and SimMechanics. A dynamic friction model describing the interaction between the wiper blades and the windscreen is developed, based on results presented in the literature. A simple aerodynamic model describing the forces on the wiper blades is also established. The parameters of the models are derived using three sequential optimisation methods: Transfer function parameter identification, Genetic Algorithms (GA) and a nonlinear least squares local optimiser. A transfer function relating the motor current to the voltage was derived for step one, and a bespoke GA has been developed for step two. The parameters were successfully identified. Following this, Artificial Neural Networks (ANN) were used to convert the physical models into real-time capable models suitable for HIL simulation. Finally, adaptive control systems are designed in order to maintain the motor at a constant velocity. The models are presented in a Simulink library and graphical user interface modelling tool for ease of use

    Similar works