A molecular communication system operating in a pipe propagation channel with no induced flow is considered. Experimentally, it is shown that discrepancies in channel impulse response can be accurately modelled by an additive noise model. The noise amplitude is Nakagami distributed, and the shape and spread parameters of the distribution increase monotonically with propagation distance. Furthermore, demonstrated how the proposed noise model can be used to calculate the bit-error-rate and the capacity of a binary symmetric channel