thesis

Detector development for a neutrino detector with combined optical and charge readout in room temperature liquids

Abstract

A room temperature liquid scintillator time projection chamber has the potential to give both ne grained tracking and calorimetry, analogous to liquid argon, only without the cryogenic infrastructure. This type of detector would be invaluable as a cost effective, large volume detector for use in neutrino physics. This motivates the search for candidate liquids with both excellent charge transport properties and optical properties. This work presents results from tests of five dielectric room temperature liquid scintillators; Di isopropyl naphthalene, Phenyl xylyl ethane, Linear alkyl benzene, Mono isopropyl biphenyl, and Mono isopropyl naphthalene, whose charge transport properties are investigated for the first time. The results are also presented from room temperature liquids Tetramethyl pentane, and Cyclopentane, whose optical properties have not previously been investigated. The liquids tested have shown favourable properties, although none of the above liquids has been found to have both charge transport and scintillation light at a suitable level for use in a neutrino detector

    Similar works