research

Attitude stability and altitude control of a variable-geometry Earth-orbiting solar sail

Abstract

A variable-geometry solar sail for on-orbit altitude control is investigated. It is shown that, by adjusting the effective area of the sail at favorable times, it is possible to influence the length of the semi-major axis over an extended period of time. This solution can be implemented by adopting a spinning quasi-rhombic pyramidal solar sail which provides the heliostability needed to maintain a passive “sun-pointing” attitude and the freedom to modify the shape of the sail at any time. In particular, this paper investigates the variable-geometry concept through both theoretical and numerical analyses. Stability bounds on the sail design are calculated by means of a first-order analysis, producing conditions on the opening angles of the sail, while gravity gradient torques and solar eclipses are introduced to test the robustness of the concept. The concept targets equatorial orbits above approximately 5,000 km. Numerical results characterize the expected performance, leading to (for example) an increase of 2,200 km per year for a small device at GEO

    Similar works