research

Extremely large extinction efficiency and field enhancement in terahertz resonant dipole nanoantennas

Abstract

The distinctive ability of nanometallic structures to manipulate light at the nanoscale has recently promoted their use for a spectacular set of applications in a wide range of areas of research including artificial optical materials, nano-imaging, biosensing, and nonlinear optics. Here we transfer this concept to the terahertz spectral region, demonstrating a metal nanostructure in shape of a dipole nanoantenna, which can efficiently resonate at terahertz frequencies, showing an effective cross section >100 times larger than its geometrical area, and a field enhancement factor of ~280, confined on a lateral section of ~λ/1,000. These results lead to immediate applications in terahertz artificial materials exhibiting giant dichroism, suggest the use of dipole nanoantennas in nanostructure-based terahertz metamaterials, and pave the way for nanoantenna-enhanced terahertz few-molecule spectroscopy and localized terahertz nonlinear optics

    Similar works