research

Type systems for distributed programs: session communication

Abstract

Distributed systems are everywhere around us and guaranteeing their correctness is of paramount importance. It is natural to expect that these systems interact and communicate among them to achieve a common task. In this work, we develop techniques based on types and type systems for the verification of correctness, consistency and safety properties related to communication in complex distributed systems. We study advanced safety properties related to communication, like deadlock or lock freedom and progress. We study session types in the pi-calculus describing distributed systems and communication-centric computation. Most importantly, we de- fine an encoding of the session pi-calculus into the standard typed pi-calculus in order to understand the expressive power of these concurrent calculi. We show how to derive in the session pi-calculus basic properties, like type safety or complex ones, like progress, by exploiting this encoding

    Similar works