Abstract

We previously identified osteopontin (OPN) as a promising marker for the early detection of hepatocellular carcinoma (HCC). In this study, we investigated the association between prediagnostic circulating OPN levels and HCC incidence in a large population-based cohort. A nested case-control study was conducted within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. During a mean follow-up of 4.8 years, 100 HCC cases were identified. Each case was matched to two controls and OPN levels were measured in baseline plasma samples. Viral hepatitis, liver function, and α-fetoprotein (AFP) tests were also conducted. Conditional logistic regression models were used to calculate multivariable odds ratio (OR) and 95% confidence intervals (95% CI) for OPN levels in relation to HCC. Receiver operating characteristics curves were constructed to determine the discriminatory accuracy of OPN alone or in combination with other liver biomarkers in the prediction of HCC. OPN levels were positively associated with HCC risk (per 10% increment, ORmultivariable = 1.30; 95% CI, 1.14-1.48). The association was stronger among cases diagnosed within 2 years of follow-up. Adding liver function tests to OPN improved the discriminatory performance for subjects who developed HCC (AUC = 0.86). For cases diagnosed within 2 years, the combination of OPN and AFP was best able to predict HCC risk (AUC = 0.88). The best predictive model for HCC in this low-risk population is OPN in combination with liver function tests. Within 2 years of diagnosis, the combination of OPN and AFP best predicted HCC development, suggesting that measuring OPN and AFP could identify high-risk groups independently of a liver disease diagnosis. Cancer Prev Res; 9(9); 758-65. ©2016 AACR.This work was supported by NIH R01 CA120719 to LB and by the French National Cancer Institute (Institut National du Cancer; INCA) grant number 2009-139 to MJ. The coordination of EPIC is financially supported by the European Commission (DG-SANCO); and the International Agency for Research on Cancer. The national cohorts are supported by Danish Cancer Society (Denmark); Ligue Contre le Cancer; Institut Gustave Roussy; Mutuelle Générale de l’Education Nationale; and Institut National de la Santé et de la Recherche Médicale (INSERM) (France); Deutsche Krebshilfe, Deutsches Krebsforschungszentrum (DKFZ); and Federal Ministry of Education and Research (Germany); Hellenic Health Foundation (Greece); Italian Association for Research on Cancer (AIRC); National Research Council; and AIRE-ONLUS Ragusa, AVIS Ragusa, Sicilian Government (Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS); Netherlands Cancer Registry (NKR); LK Research Funds; Dutch Prevention Funds; Dutch ZON (Zorg Onderzoek Nederland); World Cancer Research Fund (WCRF); and Statistics Netherlands (the Netherlands); European Research Council (ERC) (grant number ERC-2009-AdG 232997) and Nordforsk; and Nordic Center of Excellence Programme on Food, Nutrition and Health (Norway); Health Research Fund (FIS); Regional Governments of Andalucía, Asturias, Basque Country, Murcia (No. 6236) and Navarra; and ISCIII RETIC (RD06/0020) (Spain); Swedish Cancer Society; Swedish Scientific Council; and Regional Government of Skåne and Västerbotten (Sweden); Cancer Research UK; Medical Research Council; Stroke Association; British Heart Foundation; Department of Health; Food Standards Agency; and Wellcome Trust (UK). Reagents for the hepatitis infection determinations were kindly provided by Abbott Diagnostics Division, Lyon, France.This is the author accepted manuscript. The final version is available from the American Association for Cancer Research via http://dx.doi.org/10.1158/1940-6207.CAPR-15-043

    Similar works