Measuring Neuronal Signals with Microelectrode Arrays: A Finite Element Analysis

Abstract

AbstractObjectiveMeasuring neuronal cell activity using microelectrode arrays reveals a great variety of derived signal shapes within extracellular recordings. However, possible mechanisms responsible for this variety have not yet been entirely determined, which might hamper any subsequent analysis of the recorded neuronal data. For an investigation of this issue, we propose a computational model based on the finite element method describing the electrical coupling between an electrically active neuron and an extracellular recording electrode in detail. This allows for a systematic study of possible parameters that may play an essential role in defining or altering the shape of the measured electrode potential. Our results indicate that neuronal geometry and neurite structure, as well as the actual pathways of input potentials that evoke action potential generation, have a significant impact on the shape of the resulting extracellular electrode recording and explain most of the known signal shape variety.</jats:sec

    Similar works

    Full text

    thumbnail-image

    Available Versions