research

Code-Expanded Random Access for Machine-Type Communications

Abstract

The random access methods used for support of machine-type communications (MTC) in current cellular standards are derivatives of traditional framed slotted ALOHA and therefore do not support high user loads efficiently. Motivated by the random access method employed in LTE, we propose a novel approach that is able to sustain a wide random access load range, while preserving the physical layer unchanged and incurring minor changes in the medium access control layer. The proposed scheme increases the amount of available contention resources, without resorting to the increase of system resources, such as contention sub-frames and preambles. This increase is accomplished by expanding the contention space to the code domain, through the creation of random access codewords. Specifically, in the proposed scheme, users perform random access by transmitting one or none of the available LTE orthogonal preambles in multiple random access sub-frames, thus creating access codewords that are used for contention. In this way, for the same number of random access sub-frames and orthogonal preambles, the amount of available contention resources is drastically increased, enabling the support of an increased number of MTC users. We present the framework and analysis of the proposed code-expanded random access method and show that our approach supports load regions that are beyond the reach of current systems.Comment: 6 Pages, 7 figures, This paper has been submitted to GC'12 Workshop: Second International Workshop on Machine-to-Machine Communications 'Key' to the Future Internet of Thing

    Similar works

    Full text

    thumbnail-image

    Available Versions