research

The Median Largest Prime Factor

Abstract

Let M(x)M(x) denote the median largest prime factor of the integers in the interval [1,x][1,x]. We prove that M(x)=x1eexp⁑(βˆ’lif(x)/x)+OΟ΅(x1eeβˆ’c(log⁑x)3/5βˆ’Ο΅)M(x)=x^{\frac{1}{\sqrt{e}}\exp(-\text{li}_{f}(x)/x)}+O_{\epsilon}(x^{\frac{1}{\sqrt{e}}}e^{-c(\log x)^{3/5-\epsilon}}) where lif(x)=∫2x{x/t}log⁑tdt\text{li}_{f}(x)=\int_{2}^{x}\frac{\{x/t\}}{\log t}dt. From this, we obtain the asymptotic M(x)=eΞ³βˆ’1ex1e(1+O(1log⁑x)),M(x)=e^{\frac{\gamma-1}{\sqrt{e}}}x^{\frac{1}{\sqrt{e}}}(1+O(\frac{1}{\log x})), where Ξ³\gamma is the Euler Mascheroni constant. This answers a question posed by Martin, and improves a result of Selfridge and Wunderlich.Comment: 7 page

    Similar works

    Full text

    thumbnail-image

    Available Versions