Consider a weighted or unweighted k-nearest neighbor graph that has been
built on n data points drawn randomly according to some density p on R^d. We
study the convergence of the shortest path distance in such graphs as the
sample size tends to infinity. We prove that for unweighted kNN graphs, this
distance converges to an unpleasant distance function on the underlying space
whose properties are detrimental to machine learning. We also study the
behavior of the shortest path distance in weighted kNN graphs.Comment: Appears in Proceedings of the 29th International Conference on
Machine Learning (ICML 2012