Septic shock is a leading cause of death in intensive care units. As part of the septic process, the endothelium becomes activated and propagates the septic condition. It has become evident that reactive oxygen species (ROS) are involved in the signaling of mediators of sepsis, such as tumor necrosis factor-alpha (TNF-alpha) and the lipopolysaccharide coating of gram-negative bacteria (LPS). An important source of these ROS is NADPH oxidase, which is a ubiquitously expressed enzyme complex that also exists in endothelial cells (EC). We showed that O2- from NADPH oxidase was important for LPS, as well as TNF-alpha, induction of two markers of an activated endothelium, interleukin-8 (IL-8) and intercellular adhesion molecule-1 (ICAM-1) in human umbilical vein endothelial cells (HUVEC).Expression of a gene can be increased by a rise in transcription as well as post-transcriptional changes, such as mRNA stability modifications. We assessed the role of NADPH oxidase in this process and found a complex interaction. Although LPS increases IL-8 transcription, it also destabilizes IL-8 mRNA in a p38 and extracellular signal-regulated kinase (ERK) MAPK dependent manner, which was only evident after blocking NADPH oxidase. This regulation involved the mRNA de-stabilizing factor tristetraprolin (TTP). In contrast, TNF-alpha enhanced the stability of IL-8, IL-6 and ICAM-1 mRNA in a p38 MAPK dependent, but NADPH oxidase independent manner. Furthermore, LPS did not have an effect on mRNA stability of IL-6 or ICAM-1 in our system. Thus, we conclude from our studies that the NAPDH oxidase is important for the induction of inflammatory molecules in LPS and TNF-alpha treated EC and is also involved in mRNA stability regulation of these molecules in a signal and gene specific fashion