research

Continuation-conjugate gradient methods for the least squares solution of nonlinear boundary value problems

Abstract

We discuss in this paper a new combination of methods for solving nonlinear boundary value problems containing a parameter. Methods of the continuation type are combined with least squares formulations, preconditioned conjugate gradient algorithms and finite element approximations. We can compute branches of solutions with limit points, bifurcation points, etc. Several numerical tests illustrate the possibilities of the methods discussed in the present paper; these include the Bratu problem in one and two dimensions, one-dimensional bifurcation and perturbed bifurcation problems, the driven cavity problem for the Navier–Stokes equations

    Similar works