unknown

Generation of congenic mouse strains by introducing the virus-resistant genes, Mx1 and Oas1b, of feral mouse-derived inbred strain MSM/Ms into the common strain C57BL/6J

Abstract

Mx1 (Myxovirus resistance protein) and Oas1b (Oligoadenylate synthetase-1), induced by type 1 interferon (IFN), play a role in early antiviral innate immunity by inhibiting the replication of viruses. In mice, Mx1 and Oas1b confer resistance to the infection of orthomyxoviruses including influenza viruses and flaviviruses including West Nile viruses, respectively. Laboratory mice have been used to study the mechanisms of the pathogenesis of these virus infections; however, it is possible that they are not a suitable model system to study these viruses, since most of the inbred laboratory mouse strains lack both genes. It has been reported that feral mouse-derived inbred strains show resistance to the infection of these viruses due to the presence of intact both genes. In this study, we generated congenic strains in which the Mx or Oas locus of the MSM/Ms (MSM) mouce was introduced to the most widely used mouse strain, C57BL/6J (B6). B6.MSM-Mx mice showed resistance to the infection of influenza virus but not of West Nile virus. On the other hand, B6.MSM-Oas mice showed resistance to the infection of West Nile virus but not of influenza virus. Our results indicate that Mx1 and Oas1b show highly antiviral specificity in mice possessing the same genetic background. Therefore, these congenic mice are useful for not only infection study but also investigation of host defense mechanism to these viruses

    Similar works