unknown

Iterative limit analysis of structures within a scaled boundary finite element framework

Abstract

This paper presents an iterative elastic analysis approach to determine the collapse load limit of structures. The proposed scheme is based on the use of a modified elastic compensation method, where the structure is modeled within a scaled boundary finite element framework. The formulation takes the general form of polygon scaled boundary finite elements, which overcomes the challenges associated with stress singularities and complex geometries. The approach provides coarse mesh accuracy and numerical stability under incompressibility conditions, and is suitable for large scale problems that often require a large number of iterations to converge to the collapse load solution. A number of successfully solved examples, one of which has been given herein, illustrate the robustness and efficiency of the proposed method to compute the collapse load of structures

    Similar works