research

Robust MPC for actuator-fault tolerance using set-based passive fault detection and active fault isolation

Abstract

In this paper, an actuator fault-tolerant control (FTC) scheme is proposed, which is based on tube-based model predictive control (MPC) and set-theoretic fault detection and isolation (FDI). As a robust MPC technique, tube-based MPC, can effectively deal with system constraints and uncertainties with relatively low computational complexity. Set-based FDI can robustly detect and isolate actuator faults. Here, fault detection (FD) is passive by invariant sets, while fault isolation (FI) is active by tubes. Using the constraint-handling ability of MPC controllers, an active FI approach is implemented. A numerical example illustrates the effectiveness of the proposed approach.Postprint (author’s final draft

    Similar works