unknown

Pushing SEA beyond its limits: a model for real building structures

Abstract

The main challenge for models of building acoustics is being able to consider all the geometrical and physical details of real structures with a reasonable computational cost for high frequencies. The SEA (Statistical Energy Analysis) framework is suitable for these frequencies, but presents some difficulties for dealing with complex structural configurations. For instance, modelling absorbing materials with SEA is an open issue, since they are neither reverberant subsystems nor conservative couplings. In this work, a model to account for absorbing materials with a SEA-like approach is performed. It is obtained by analogy with an electrical circuit. This approach is combined with numerical simulations in order to solve vibroacoustic problems in real structural configurations (including complex geometries or dissipative connections) throughout the entire frequency range required by regulations. The proposed technique is applied to modelling the sound insulation of double walls. These walls consist of two leaves of plasterboard connected through metallic studs and filled with a layer of absorbing material. The combination of numerical simulations and SEA arises as a good technique for modelling the acoustic behaviour of real life structures with an affordable computational cost.Peer ReviewedPostprint (published version

    Similar works