Diallyl trisulfide modulates cell viability and the antioxidation and detoxification systems of rat primary hepatocytes

Abstract

This study investigated the effects of various concentrations of diallyl trisulfide (DATS) and incubation times on cell viability, glutathione (GSH) content, and GSH-related enzyme activity in rat primary hepatocytes. Isolated and cultured primary rat hepatocytes were used as an experimental model. Cells were treated with 0 (control), 0.025, 0.05, or 0.25 mmol/L DATS for 0, 4, 8, or 24 h. After 24 h of treatment, some cells were incubated in fresh medium without DATS for an additional 24 h (48-h incubations). Based on lactate dehydrogenase (LDH) leakage and morphological examination, hepatocytes treated with 0.025 mmol/L DATS did not differ from the control cells at 4, 8, 24, and 48 h of incubation. However, LDH leakage was higher than in the control cells (P < 0.05) when the hepatocytes were treated with 0.05 or 0.25 mmol/L DATS for 4 h or more. The intracellular GSH levels of hepatocytes treated with 0.025 or 0.05 mmol/L DATS were higher than those of the control cells (P < 0.05), whereas those treated with 0.25 mmol/L DATS did not differ. The activity of glutathione reductase (GRd) was higher than in the control cells at 24 h (P < 0.05) when the hepatocytes were treated with 0.025 mmol/L DATS. When the hepatocytes were treated with 0.025 mmol/L DATS, the activity of glutathione S-transferase (GST) was higher than in the control cells at 48 h (P < 0.05). In hepatocytes treated with 0.05 mmol/L DATS, the activity of GST and glutathione peroxidase (GPx) was higher than in the control cells (P < 0.05) at 24 and 48 h of incubation. The results indicate that 0.025 or 0.05 mmol/L DATS could enhance antioxidation and detoxification capabilities by increasing the intracellular GSH level and the activity of GPx, GRd, or GST in rat primary hepatocytes. However, 0.05 or 0.25 mmol/L DATS might adversely affect the viability of hepatocytes

    Similar works